EnhancedQuad#
- model.element("EnhancedQuad", tag, nodes, section[, pressure, rho, b1, b2])
- Parameters:
tag – integer, unique element object tag
nodes – tuple, a tuple of four element nodes in counter-clockwise order
section –
tuple or int. If int, it is the tag of a previously defined PlaneSection. If tuple, it is a tuple of the form (
thick
,type
,material
) wherethick
floatelement thickness
type
|str|string representing material behavior. The type parameter can be either
'PlaneStrain'
or'PlaneStress'
material
integertag of an General Materials
pressure – float, surface pressure (optional, default = 0.0)
rho – float, element mass density (per unit volume) from which a lumped element mass matrix is computed (optional, default=0.0)
b1 – float, constant body forces defined in the domain (optional, default=0.0)
b2 – float, constant body forces defined in the domain (optional, default=0.0)
- element quad $eleTag $iNode $jNode $kNode $lNode $thick $type $matTag <$pressure $rho $b1 $b2>
Argument |
Type |
Description |
---|---|---|
$eleTag |
integer |
unique element object tag |
$iNode $jNode $kNode $lNode |
integer four nodes defining element boundaries |
input in counter-clockwise order around the element. |
$thick |
float |
element thickness |
$type |
string |
string representing material behavior. The type parameter can be either “PlaneStrain” or “PlaneStress.” |
$matTag |
integer |
tag of nDMaterial |
$pressure |
float |
surface pressure (optional: default = 0.0) |
$rho |
float |
element mass density (per unit volume) from which a lumped element mass matrix is computed (optional: default=0.0) |
$b1 $b2 |
float |
constant body forces defined in the isoparametric domain (optional: default=0.0) |
Theory#
Fig. 30 EnhancedQuad element node numbering#
This element implements the Q1/E4 assumed strain interpolation. The formulation is generally credited to Taylor, Beresford, and Wilson (1976) [1]. A variational basis for the formulation is given by Simo and Rifai (1990) [2].
For linear-elastic response, the formulation is equivalent to a Hellinger-Reissner element [3] with interpolation